• Blogpost
  • Website
  • LinkedIn

A study on symbiotic relationships and reciprocal structures inspired by ferns.

PTERIDOMANIA

[noun]

(ˌtɛrɪdəʊˈmeɪnɪə)

Obsolete - an excessive enthusiasm for ferns. Also known as fern fever.

About DS10

Tutors: Toby Burgess, Arthur Mamou-Man

Brief

A. Environmental materials studies through physical and digital model making.

B. Studying a plant and its ecosystem in detail at Kew Gardens.

C. Weekly Grasshopper workshop with Radiance/Daysim and evolutionary solving.

D. Find and analyse an existing site/business/operation that does not meet the U.N sustainable goals (ie polluting, unethical )

E. On that site, (i.e. a factory, a headquarters, a client’s home) propose an alternative building/process/program that contributes positively in demonstrable sustainable terms.

O. Output: many physical sketch models which show the progression and development of the understanding of both the material and the botanical studies. A large diagram explaining the lifecycle of their chosen product in relation to their designs.

Choice of material with genuinely sustainable credentials and explore it through physical modelling informed by digital fabrication techniques. Through rigorous physical and digital experiments, we explore the physical and assembly potentials of the material to find novel applications, structures and geometry and combining these experiments with the research into plants to understand the systems at place that organise and hold together plants and make them operate as living processes.

 
materials & structure
Fractals & Friction

I chose to begin by looking into the Fern plant and its' form. All ferns are Pinnate - central axis and smaller side branches - considered a primitive condition. The veins never coalesce and are known to be ‘free’. The leaves that are broadly ovate or triangular tend to be born at right angles to the sunlight.

 

I then decided to model a leaf digitally, attempting to simulate the fractal nature found in a fern frond and the leaves to 3 degrees of fractals. I then simplified the fern frond to 2 levels to allow for easier laser cutting and structural stability. The large perimeter meant, therefore, there was a large amount of surface area for friction so I explored different configurations and tested their intersections.

I then selected the fern frond intersection I found to show the best stability out of the tested ones shown previously. By arraying them further, they began to curve. When pressure is applied to the top of the arch, the intersections are strengthened and the piece appears to gain structural integrity.

When a full revolution is completed, the components appear to gain their maximum structural integrity. Since I had decided to digitally model the fern frond, I was able to decrease the distance between the individual leaves in the centre of each frond through grasshopper. By doing this, the intersections connecting a frond with another were less tight in the centre than on the extremities of each frond, allowing for a slight double curvature.

finding Double curvature

With these models, I began experimenting with the distance between leaves attempting to create a larger double curvature as seen before. The thickness of the plywood in these tests was also varied. I began simplifying the individual leaves. An arch-like form will only have one point of contact with another arch-like form. By having a straight edge for each individual leaf, the friction between leaves could be stretched and constant.

simplifying the component

I continued to iterate the leave by decreasing any arching on the leaf and finding the minimum component, the smallest possible component in the system. By arraying a component formed of 3 'leaves' on one hand and 2 on the other, I would be able to grow the system in one direction as before due to the reciprocal organisation and in the other direction by staggering the adjacent component. I scaled up this component to view what difficulties emerge when the component is larger. The stress tests of this arrangement showed a phased failure of the 'column'. Instead of breaking at once, row by row of components failed with time, outwards-inwards.

Symbiosis in materials

I extracted the minimum possible component from the previous iterations and attempted to merge the system with firstly, 3d printed PLA bioplastic components and then with an algae bioplastic produced at home. I became interested in the idea of being able to coat the wood in an algae bioplastic substituting the need for any epoxy for waterproofing. The stress tests for this component showed a surprising total of 956 kg-force for it to fail.

Algae Bioplastics
Flexible test

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Brittle test
 
 
Site Location

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Map Rotterdam Site 4 [Converted].jpg

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

What is Azolla?

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

real life action

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Masterplan.jpg

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Floating Azolla District – Dwellings

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

Here, I began combining different quantities of vegetable glycerine, agar agar (extracted from red algae and used for cooking) and water. By changing the ratios of agar and glycerine I was able to create 2 different bioplastics: one being brittle and the other flexible. See above for the flexible sample and below for the brittle sample. Both samples appeared to fail under the same 7 Kg-force.

 
Section Rendered 3.jpg

ARCHITECTURAL

PROPOSAL

1.jpg
This site was designed with the
.com
website builder. Create your website today.
Start Now